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Preface

This book is intended to be an introduction to delay differential equations for upper-
level undergraduates or beginning graduate mathematics students who have a rea-
sonable background in ordinary differential equations and who would like to get to
the applications quickly. T used a preliminary version of this manuscript in teaching
such a course at Arizona State University over the past two years. Existing texts on
the subject by Diekmann et al. [26] and by Hale and Lunel [41], while excellent on
the theory, are heavy on functional analytic background and light on applications.
In my experience, most graduate students do not have the requisite background to
read such texts profitably. A more applications oriented text by Kuang [48] is, un-
fortunately, out of print.

Both theory and applications of delay differential equations require a bit more
mathematical maturity than its ordinary differential equations counterparts. Primar-
ily, this is because the theory of complex variables plays such a large role in ana-
Iyzing the characteristic equations that arise on linearizing around equilibria. Ideal
prerequisites for this book include a second course in ordinary differential equations
such as in the text 178, 10], some familiarity with complex variables, and some ele-
mentary analysis. Results from the calculus of several variables are routinely used,
especially, the implicit function theorem.

This book focuses on the key tools necessary to understand the applications liter-
awre involving delay equations and to construct and analyze mathematical models
involving delay differential equations. Tt begins with a survey of mathematical mod-
els involving delay equations. These are primarily from the biological literature, in
keeping with my own prejudices, and due to the relative frequency of delay models
in that literature relative to others. This is followed by a “warm-up” chapter on the
simplest possible delay equation #'(t) = —au(t —r). This simple example illustrates
many of the complexities that arise with delays and has the advantage that results
may be easily and explicitly worked out. Its main message is that delays naturally
induce oscillations. Standard existence and unigueness resuolts are taken up in Chap-
ter 3. The method of steps is introduced and exploited for discrete delay equations.
For the reader interested mainly in applications, this may suffice. A more general
approach follows biit no fixed point theorems are used: the method of successive
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approximations works fine. A key notation is introduced here, one that takes a bit of
getting used to, namely the state variable x; which appears throughout the remain-
der of the book. In addition to continuous dependence of solutions on initial data,
continuation of solutions, positivity, and comparison of solutions are also discussed
because many applications come from biology where positivity restrictions are in-
herent to the models. Linear equations are taken up next with the primary aim being
stability. In applications, linear delay equations arise through linearization of a non-
linear equation about an equilibria so the focus is on linear stability analysis and the
characteristic equation the roots for which determine stability. Proof of the validity
of linearized stability would require too much additional mathematics and therefore
it is not given.

The following chapter is an introduction to abstract dynamical systems theory,
using ordinary differential equations, discrete-time difference equations, and now

delay differential equations as examples. It is shown that a delay differential equa-
tion induces a semidynamical system on the space of continuous functions on the
delay interval. The focus then turns to omega limit sets, the usual results familiar’
from ODEs continue to hold but with some nuances due to the infinite-dimensional
state space. Applications to the delayed logistic equation and the delayed chemostat
model are treated. The LaSalle invariance principle is established and an applica-
tion is given, Next, the Hopf bifurcation theorem, critical for applications, is treated.
A simple canonical example is considered where the bifurcation can be explicitly
computed, Following this, the Hopf bifurcation theorem is stated without proof. It
is applied to the standard delayed negative feedback system x'(#) = —f(x(z — 1))
‘where xf(x) > 0. In this case, a formal expansion for the periodic solution in terms
. of a small parameter (this is fully justified in an appendix) is given. Applications
to various second-order delay equations are then considered, one of which is stabi-
lizing the up position of a damped pendulum with delayed feedback; another is a
model of a gene regulatory network. Finally, the beautiful Poincaré-Bendixson the-
ory for monotone cyclic feedback systems, obtained recently by Mallet-Paret and
Sell, is stated.

The following brief chapter is an introduction to equations w1th infinite delay and
to the linear chain trick by which certain special kinds of infinite delays can lead to
ordinary differential equations. These arise often in the modeling literature so an
example is discussed in some detail. The final chapter focuses on a model of virus
predation on a bacterial host in the setting of a chemostat where the bacteria subsist
on a supplied nutrient. The delay corresponds to the latent period following virus
infection during which new virus particles are manufactured within the cell. Most
of the theoreticat results of previous chapters are used in the analysis of this system
of delay equations.

Two brief appendices should help those readers needing additional background

" on complex variables and analytic functions including the very useful Rouché’s the-
orem, and implicit function theorems. The Ascoli-Arzela theorem is stated and dis-
cussed and the useful fluctuation method is described. A second appendix is devoted
to a rigorous proof of Hopf bifurcation for the delayed negative feedback systems.
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The impatient reader could skim the applications in Chapter 1, jump over Chapter
2, and start with Chapter 3. A note on notation: we use R for the set of real numbers,
C for the set of complex numbers, and f” denotes the derivative of a function f.

T would like to acknowledge the influence of Yang Kuang, a collaborator on much
of the author’s own work in delay differential equations, on this work and to thank
him for providing several figures used in the book. Several students, colleagues,
and anonymous reviewers read portions of the manuscript and provided valuable
feedback. Among these, the author would like to thank Patrick de Leenheer, Thanate -
Dhirasakdanon, Zhun Han, and Harlan Stech. Most of what I know about delay
differential equations, I learned from Jack Hale, a giant in the field.

Finally, I have been supported by the NSF during the time this book took shape,
recently by award DMS (913440.

Tempe, Arizona Hal Smith
July, 2010
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